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ABSTRACT

Uncertainty in cumulus convection parameterization is one of the most important causes of model climate

drift through interactions between large-scale background and local convection that use empirically set pa-

rameters. Without addressing the large-scale feedback, the calibrated parameter values within a convection

scheme are usually not optimal for a climate model. This study first designs a multiple-column atmospheric

model that includes large-scale feedbacks for cumulus convection and then explores the role of large-scale

feedbacks in cumulus convection parameter estimation using an ensemble filter. The performance of convection

parameter estimationwith orwithout the presence of large-scale feedback is examined. It is found that including

large-scale feedbacks in cumulus convection parameter estimation can significantly improve the estimation

quality. This is because large-scale feedbacks help transform local convection uncertainties into global climate

sensitivities, and including these feedbacks enhances the statistical representation of the relationship between

parameters and state variables. The results of this study provide insights for further understanding of climate

drift induced from imperfect cumulus convection parameterization, which may help improve climate modeling.

1. Introduction

General circulation models (GCMs) are powerful

tools to study the climate system. However, most GCMs

have systematic bias in long-term simulations because of

deficiencies in the representation of water and energy

budgets (Gupta et al. 2013). One important cause of

these deficiencies is closely related to the development

of the cumulus convection parameterizations (Ma et al.

2013; Bretherton 2007). Convection parameterization

can influence the performance of climate models by

generating a significant fraction of the total precipitation

and redistributing large-scale water vapor, thus im-

pacting water and radiation budgets (Emanuel and
�Zivković-Rothman 1999). Particularly in the tropics,
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where convection is most active, the intensity, location,

and frequency of convection can influence the structure

of theWalker circulation (Park and Funk 2011; Hourdin

et al. 2006;Webster and Yang 1992), the variability of El

Niño–Southern Oscillation (ENSO; Webster and Yang

1992; Lau and Chan 1988; Xiang et al. 2013; Bretherton

2007), the intertropical convergence zone (ITCZ; Song

and Zhang 2009), the Madden–Julian oscillation (Tokioka

et al. 1988; Lin et al. 2006), and monsoon intensity

(Webster and Yang 1992; Mukhopadhyay et al. 2010).

Furthermore, convection can have a great impact on

global climate (Tracton 1973). Although many cumulus

convection parameterization schemes have been devel-

oped for decades, large uncertainties remain because of the

incomplete understanding of physical processes, as well as

imperfect numerical implementation. Among them, em-

pirically set or uncertain parameter values are one major

source of model biases. Cumulus convection parameters,

especially those related to entrainment, have been rec-

ognized as the most important parameters that lead to

the largest uncertainty in the climate projection (Rougier

et al. 2009; Murphy et al. 2004).

It is known that model parameters can be estimated

using observations through data assimilation approaches

(Jazwinski 1970; Banks 1992a,b; Annan and Hargreaves

2004; Annan et al. 2005; Pulido and Thuburn 2006; Kang

et al. 2011; Zhang 2011a; Zhang et al. 2012; Ruiz et al.

2013; Zhang et al. 2015). This data-assimilation-based

parameter estimation (also known as parameter optimi-

zation) has been applied to estimate physical parameters

for mitigation of parameterization mismatch (Emanuel

and �Zivković-Rothman 1999; Aksoy et al. 2006a,b; Tong

and Xue 2008a,b; Schirber et al. 2013; Ruiz and Pulido

2014; van Lier-Walqui et al. 2012, 2014; Posselt andBishop

2012; Posselt et al. 2014). However, since convection is

discontinuous in time and space (�Zupanski 1993; Zhang

et al. 2001), estimating the cumulus convection param-

eters is usually challenging. For example, because of its

threshold nature, when there is no convection adjust-

ment, the relationship between state variables and con-

vection parameters represented in the model is ambiguous,

whichmakes an accurate estimation difficult. In fact, a local

convection is triggered by the large-scale environment, and

the large-scale environment is in turn modified by the

convection through the feedbacks between local convection

and the large scales. This interaction links the ‘‘scattered’’

convection together and is of crucial importance to the cli-

mate system (Randall et al. 1996; Arakawa and Schubert

1974). However, most of the previous studies on convection

parameter estimation are conducted in a single-column-

based model (SCM) following Betts and Miller (1986),

where such interaction is usually overlooked. Emanuel

and �Zivković-Rothman (1999) tried to estimate cumulus

convection parameters by minimizing model forecast er-

rors using a variational approach based on an SCM.Golaz

et al. (2007) utilized an ensemble parameter estimation

technique to calibrate a single-column cloud parame-

terization by attempting to match predicted fields to

reference large-eddy simulations. Recently, some stud-

ies used GCMs for convection parameter estimation

(Schirber et al. 2013; Ruiz and Pulido 2014). For exam-

ple, Schirber et al. (2013) used an ensemble Kalman

filter (EnKF) to estimate convection parameters in a

comprehensive GCM, in both the perfect model sce-

nario and the real observation scenario. Both the SCM

and GCMmethods have advantages and disadvantages.

An SCM is less expensive but does not consider large-

scale feedbacks and therefore cannot fully represent the

sensitivity of the climate to cumulus convection pa-

rameters (Randall et al. 1996; Emanuel and �Zivković-

Rothman 1999). AGCMavoids these two problems, but

its complexity seriously limits one’s understanding on

some fundamental aspects of cumulus convection pa-

rameter estimation. For example, it is difficult to isolate

the cumulus convection parameter error from other er-

ror sources within a given GCM. Moreover, parameter

values estimated by a GCM or an SCM may differ from

each other (Schirber et al. 2013; Tiedtke 1989). On the

one hand, the SCMs usually do not consider the in-

teraction between local convection and large scales while

estimating parameters while the GCMs do. On the other

hand, parameters estimated with an SCM aremore locally

optimized, while parameters estimated with a GCM are

more globally optimized. As such, when the parameter

values estimated from an SCMare applied to aGCM, they

could cause model biases.

In this study, to explore the role of the large-scale

feedback in cumulus convection parameter estimation, a

multiple-column atmospheric model is designed where

the interaction between large-scale circulation and local

convective columns can be easily adjusted to emulate the

situation of either a GCM or an SCM. After the model

description in section 2, section 3 introduces the ensemble

adjustment Kalman filter (EAKF; Anderson 2001, 2003;

Zhang and Anderson 2003), which is used for cumulus

convection parameter estimation in this study. Experi-

ments of cumulus convection parameter estimation with

orwithout the large-scale feedback under differentmodel

error contexts are performed, and the results are ana-

lyzed and discussed in sections 4 and 5, respectively.

Conclusions and discussions are given in section 6.

2. Model

To investigate the impact of large-scale feedbacks

on cumulus convection parameter estimation, we
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first design a multiple-column model based on three

principles:

1) The model should be able to represent the large-

scale feedback that the local convection interacts

with adjoining areas. And the interaction can be

easily turned on or off to simulate the fundamental

feature of an SCM and a GCM so that we can show

the difference between SCM parameter estimation

and GCM parameter estimation.

2) The model should be able to drive the cumulus

convection parameterization scheme and should in-

clude important physical rules, such as convection–

radiation equilibrium and convection driven by

warm sea surface temperature (SST).

3) The model should be simple enough so that it is easy to

performparameter estimationwith an ensemblemethod

and the sources of model errors are easily isolated.

The model is designed to simulate typical conditions

in the tropical Pacific region, especially the Walker cir-

culation area, consisting of regions with high convective

activity and regions with low convective activity. The

model contains 10 columns, with a cyclic boundary

condition, and 28 vertical sigma levels. The surface

pressure is fixed at 1000hPa, and the top model layer is

about 2.7 hPa. The prognostic equations are as follows:

›T

›t
52u(z)

›T

›x
1 g

›H

›p
1F

T
1R and (1)

›q

›t
52u(z)

›q

›x
1 g

›E

›p
1F

q
, (2)

where T and q are temperature and specific humidity.

This model is a simple radiative–convective equilibrium

model with large-scale advection.

The convective adjustment terms, FT and Fq, are cal-

culated using the simplified Arakawa–Schubert con-

vection parameterization scheme (SASCNV; Pan and

Wu 1995; see http://www.nco.ncep.noaa.gov/pmb/codes//

nwprod/ngac.v1.0.0/sorc/ngac_fcst.fd/atmos/phys/sascnv.f).

This cumulus convection parameterization scheme is a

one-type cloud scheme simplified from the Arakawa–

Schubert scheme (Arakawa and Schubert 1974; Lord

and Arakawa 1980; Lord 1982; Grell 1993). SASCNV

includes three parts: static control, dynamic control,

and feedbacks. In static control, a cloudmodel is used to

describe thermodynamic properties of the updraft and

downdraft (Fig. 1). For the updraft, in each column, the

FIG. 1. Schematic figure of cloudmodel in SASCNV. The atmospheric column is divided into

the subcloud layer and the cloud region above. In the cloud region, cumulus convection in-

fluences the environment by cumulus-induced subsidence and detrainment of saturated air. In

the subcloud layer, cumulus convection affects the depth of the mixed layer through cumulus-

induced subsidence. The cloud model searches for the air parcel with local maximum se below

700 hPa as the convection starting level. The air parcel is then taken upward to the LFC con-

serving ses. The cloud base is the LFC.After that, the air is taken upward to the cloud top, which

is defined as the height where ses of the air is less than se of the environment. For the updraft,

entrainment takes place between the starting point and the LFC, and a percentage of a of the

mass flux is specified at the starting point, which is used to calculate the entrainment rate.

Detrainment occurs at the cloud-top level. Downdraft happens beyond the upper level of the

local minimum se level around 400 hPa (Pan and Wu 1995).
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convection starts at the level of local maximum of moist

static energy se. An air parcel from this level is lifted to find

the level of free convection (LFC), which defines the cloud

base. The level where the saturation moist static energy ses
of the lifted air parcel is smaller than se of the environment

is defined as the cloud top. Assuming that entrainment

only occurs between the convection starting point and

cloud base, the parcel mass flux is rederived (Pan and Wu

1995). A portion of a of themass is specified at the starting

point, which helps calculate the entrainment rate. De-

trainment occurs at the cloud top. The downdraft starts at

the upper level of local minimum se. In the dynamic con-

trol, the mass flux is determined by assuming a balance

between the generation of moist convective instability by

large-scale processes and its destruction by cumulus con-

vection. The feedback of the cumulus onto the large-scale

environment variablesT and q is calculated using themass

flux function (Pan and Wu 1995). There are five tunable

parameters that have great impact on the SASCNV pa-

rameterization (Pan and Wu 1995). Four of them are

chosen for estimation (Table 1). The integration time scale

for a unit mass flux Mb is used to calculate the balance

between the destabilization of an air column by large-scale

atmosphere and the stabilization of the cumulus convec-

tion (Pan andWu 1995; Arakawa and Schubert 1974). The

maximum precipitation efficiency Ed affects the water

budget. The percentage of entrained mass originating at

the starting point a is used to calculate the entrainment

rate and has been used for parameter estimation in pre-

vious studies (Schirber et al. 2013). This parameter is

considered to be very important for the estimation of the

uncertainty of climate sensitivity (Murphy et al. 2004;

Schirber et al. 2013; Klocke et al. 2011; Knight et al. 2007).

The evaporation efficiency Ey is closely related to water

vapor distribution. The other unselected parameter is a

constant to calculate detrainment rate b. Similar to the

entrainment parameter a that controls the updraft mass

flux, b controls the downdraft mass flux. The net updraft

mass flux is therefore the residual of the two mass fluxes.

Since the updraft process is much more dominant, the in-

fluence of this detrainment parameter is relatively small.

The sensitivity of model states to this parameter is the

smallest among all five tunable parameters (not shown).

Therefore, it is difficult for the uncertainty of this param-

eter to be transferred to the observable model states,

making it not very suitable for parameter estimation with

statistical method. Special treatment is needed to enhance

the signal-to-noise ratio in the parameter estimation pro-

cess. It takes a much longer time for estimated b to con-

verge to the truth; therefore, it is not currently considered

in this work. Table 1 lists the default values of the chosen

parameters that have been used for medium-range fore-

casts by the National Centers for Environmental Pre-

diction since the late 1990s (Pan and Wu 1995).

The first term on the right-hand side of Eqs. (1) and

(2) is advection, where u is the horizontal wind as a

function of height z. The horizontal wind and vertical

velocity are fixed as constant profiles given by the time

mean and spacemean from the output of an atmospheric

general circulation model in the tropical Pacific (108S–
108N, 1208E–908W) during 1979–2011. The distance ›x

in this term is set to be about 400 km. In most cumulus

parameterization studies, this advection term, reflecting

the interaction between large scales and local convec-

tion, is smaller than the convection adjustment term and

is usually prescribed with observations in SCM-based

studies (Randall et al. 1996; Emanuel and �Zivković-

Rothman 1999) so that the local convection impacts only

itself and does not interact with the large-scale flow. In

our study, the large scale is turned off by prescribing the

neighboring information needed in the advection term;

therefore, the local convection does not interact with

other locations through temperature and moisture gra-

dient. However, recent studies show that the advection,

especially the midlevel moisture advection, can greatly

influence the performance of the deep convection pa-

rameterization and is therefore very important (Sobel

and Bellon 2009; Bretherton 2007). In the real world, the

large-scale feedback can be very complicated. For ex-

ample, the local convection can influence the heat and

water budget of the mean flow through radiation, wind,

and pressure adjustment. These influences on the large-

scale flows on the one hand are transferred to other

locations and on the other hand impact the local atmo-

spheric stability in the future. In our study, because of its

simplicity, the advection term is used as a representation

TABLE 1. Tunable parameters in SASCNV.

Symbol Description Default value Valid range

Mb (Pan and Wu 1995;

Arakawa and Schubert 1974)

The integration time for unit mass flux 10.00 s 0 s to 1.5min

Ed (Sui et al. 2007; Braham 1952) Maximum precipitation efficiency 0.30 0 to 1

a (Pan and Wu 1995; Schirber et al. 2013;

Klocke et al. 2011)

A constant in the calculation of the

entrainment rate

0.50 0 to 1

Ey (Mrowiec et al. 2012) Evaporation efficiency 0.07 0 to 1
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of the interaction in order to make the physical question

clear and focused.

The second terms of Eqs. (1) and (2) are the turbulent

heat and moisture flux adjustment (g›H/›p and g›H/›p,

respectively), where

H5 r2gk
u

›u

›p
and (3)

E5 r2gk
q

›q

›p
(4)

(Rennó et al. 1994). The variablesH and E are heat and

moisture fluxes; g is the gravitational acceleration; r is

the air density; p is the air pressure; u is the potential

temperature; and ku and kq are vertical diffusion co-

efficients for temperature and moisture equal to

2m2 s21. In the boundary layer, heat and moisture fluxes

are calculated using the following aerodynamic equa-

tions [Eqs. (5) and (6)] (Fairall et al. 1996; Fairall and

Bradley 2003; Liu et al. 1979) with a ‘‘swamp’’ ocean

surface, following Rennó et al. (1994):

H5 rc
p
c
h
jyj(u

s
2 u

a
) and (5)

E5 rc
d
jyj(q

s
2 q

a
) , (6)

where cp is the air heat capacity. The transfer coefficient

for heat ch is equal to 0.0012, and that for moisture cd is

equal to 0.0025. The surface potential temperature

calculated with SST is us, and the surface specific hu-

midity calculated as the saturate specific humidity given

SST is qs. The potential temperature and specific hu-

midity calculated from the temperature and humidity at

the lowest model level averaged over last 24 h for nu-

merical stability are ua and qa (Rennó et al. 1994). The

SST distribution is fixed as a sine curve along 10 columns

(dark green line, Fig. 2a). The wind speed at the surface

along the direction of the cyclic boundary domain jyj is
fixed at 5m s21, as in Rennó et al. (1994). The surface

pressure is fixed at 1000hPa.

The radiative cooling rate of the atmosphere is R in

the temperature tendency equation. Following the

method of Emanuel and �Zivković-Rothman (1999), it is

assumed that the radiative cooling of the atmosphere is

uniformly distributed in the atmosphere below 100hPa,

with a value of 22Kday21 in our study. Between the

100-hPa level and the model top, R equals zero.

The initial conditions for the temperature and mois-

ture are obtained after a spinup of 105 time steps starting

from the climatology of the averagely distributed

10 columns across the tropical Pacific during 1979–2011

from the output of an atmospheric circulation model.

The time stepping is a leapfrog scheme, with an Asselin

(1972) filter to mitigate the computational instability.

The time integration step size is 15min. The spatial

difference scheme for advection is a center difference

scheme. The model conserves enthalpy well after the

FIG. 2. Model performance. (a) Fixed model boundary sine curve for SST (dark green line) and accumulated

precipitation (blue line) for 10 000 time steps after spinup along 10 columns and (b) the evolution of total enthalpy

after spinup. The calculation of enthalpy follows that of Emanuel and �Zivković-Rothman (1999). Spatial distri-

bution of model (c) temperature and (d) moisture climatology departures with respect to spatial average.
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spinup (Fig. 2b). The spatial pattern of the model cli-

matology can be seen in Figs. 2c and 2d. The precipi-

tation pattern (Fig. 2a, blue line), which indicates the

convection distribution, is strongly influenced by the

SST, with a peak at columns 3 and 4 and a valley at

columns 8 and 9. Because of the presence of advection

and vertical wind shear, the peak and valley of pre-

cipitation shift slightly eastward of those of SST.

Under the influence of the radiative cooling, convec-

tive adjustment, boundary heating, and constant wind

shear, the model displays a 7-day oscillation that can be

found in the time evolution of enthalpy (Fig. 2b), tem-

perature and moisture profiles (Figs. 3a–d), and precipi-

tation (Figs. 3e,f). The convection happens intermittently

and is more frequent in convectively active regions (col-

umns 2–4) and less frequent in convectively inactive re-

gions (columns 7–9).

This 10-column radiative–convective equilibrium

model, with a time scale of about 7 days, is able to rep-

resent the convection process in the atmosphere in the

tropics. The advection term serves as a simple in-

teraction between convection processes and the large-

scale motion. Within this simple conceptual model, we

are able to study the influence of large-scale feedbacks

in cumulus convection parameter estimation with an

ensemble-based method. An SCM-like method and a

GCM-like method are used to drive the cumulus convec-

tion parameterization and perform parameter estimation.

Themain difference between the two iswhether there are

interactions between large-scale backgrounds and indi-

vidual convection; that is, whether the individual con-

vection has an influence on the large-scale pattern and the

large-scale pattern in turn exerts feedbacks on the indi-

vidual convection (Randall et al. 1996). In this study, we

use the 10-column convection model linked by advec-

tion to simulate a simplified general circulation model

(SGCM). When the feedback between the convective

column and the large scales is turned off by prescribing

the surrounding information with observations in the

advection terms, the model degenerates to a simplified

single-column model (SSCM). The experiment is de-

signed under the twin-experiment framework. The

SGCM with default parameter values is first integrated

to obtain a long time series as the ‘‘truth.’’ Then the

‘‘observations’’ of temperature andmoisture are created

by adding random Gaussian-distributed errors onto

the truth. The observational error for temperature and

moisture are 0.01K and 1 3 1025 kg kg21 (10% of the

variance of temperature and moisture), respectively.

After that, two model configurations, the SGCM and

SSCM with biased parameter values, are used for pa-

rameter estimation experiments and are compared with

each other. For SSCM, we test two columns: a con-

vectively active column (column 3, called SSCMC3;

Table 2) and a convectively inactive column (column 8,

called SSCMC8; Table 2). The integration of SSCM is

FIG. 3. Time evolution of modeled (a) temperature, (c) moisture profiles, and (e) precipitation of column 3

(convectively active column) and (b),(d),(f) column 8 (convectively inactive column).
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computed using Eqs. (1)–(6) as well. During the in-

tegration, the turbulent flux term, convection term, and

radiation term can be calculated within the column it-

self, while only the advection term requires temperature

and moisture information from neighboring columns.

The prerecorded observations of the neighboring col-

umns (columns 2 and 4 for SSCMC3 or columns 7 and 9

for SSCMC8) are used to compute the advection term for

the model column (column 3 or column 8). This SSCM

method is used by many studies to optimize the pa-

rameters in a cloud parameterization scheme (Emanuel

and �Zivković-Rothman 1999; Golaz et al. 2007). In this

SSCMconfiguration, two different columns (column 3 for

SSCMC3 and column 8 for SSCMC8) are used to illustrate

the scattered nature of convection: in reality, there are

observations located in convectively active regions, such

as the tropical western Pacific warm pool, and there are

also observations located in convectively inactive regions,

such as the cold tongue area in the tropical eastern Pa-

cific. Are observations in convectively inactive regions of

any help for estimating cumulus convection parameters?

With such observations, what is the performance of an

SCM and a GCM in estimating convection parameters?

3. An ensemble Kalman filter for parameter
estimation

The EAKF (Anderson 2001, 2003; Zhang and

Anderson 2003) is used for data assimilation and pa-

rameter estimation in this study. The EAKF maintains

nonlinearity of the background flow by adjusting the

ensemble mean and anomaly separately (see Anderson

2001, 2003, 2010; Zhang and Anderson 2003; Zhang et al.

2007; Wu et al. 2013) through a two-step adjustment

(Anderson 2003; Zhang and Anderson 2003; Zhang et al.

2007). The first step computes the observational in-

crement Dyo. The second step projects the observational

increment onto model states and parameters being esti-

mated through a linear regression:

D xul,i 5
cov(Dx p

l ,Dy
a
k)

sa2
k

Dyok,i and (7)

Duu
m,i 5

cov(Du p
m,Dy

a
k)

s a2
k

Dyok,i, (8)

where Dyok,i is the observational increment at the kth

observational location for the ith ensemble member.

The error covariance between the background ensemble

of the lth state variable and the analysis ensemble for

the observation at the kth observational location is

cov(Dxpl , Dy
a
k). The error covariance between the back-

ground ensemble of themth parameter and the analysis

ensemble for the observation at the kth observational

location is cov(Dup
m, Dy

a
k). The standard deviation of the

model state ensemble at the location k is sa
k. Note that

the relationship between convection and cloud-related

parameters and observable model variables could be

complicated and highly nonlinear (Schirber et al. 2013;

van Lier-Walqui et al. 2012). Most ensemble Kalman

filter techniques are based on a linear approximation

assumption (Anderson 2001, 2003, 2010) that a small

error is growing linearly within a short time period.

Therefore, with a linear approximation in the EAKF, if

the error covariance cov(Dup
m, Dy

a
k) estimated by the

ensemble is not accurate, it would likely lead to unreli-

able estimation of the parameters.

In addition, a spatial average update scheme is used

(Aksoy et al. 2006a,b) in our study to avoid when too

many observations are used to estimate a single-

parameter value, the sampling error will accumulate,

which leads to a noisy estimation. In the parameter es-

timation process, each observation generates a param-

eter increment Du, and the averages of these parameter

increments from all observations are averaged to get a

final parameter increment. This final parameter in-

crement is then added on the prior parameter ensemble

to get a posterior parameter ensemble. And this poste-

rior parameter ensemble is conveyed to the model and

used to integrate the model.

In our experiment, the ensemble size is 20. The EAKF

prefers small ensemble size because, first, the EAKF is

able to provide accurate estimation with small ensemble

size (Anderson 2001, 2003, 2010), and second, when a

large ensemble is used, an outlier behavior may occur

(Anderson 2010). We repeated parameter estimation

for larger ensemble sizes; no significant improvement

was found. And 20 is an ensemble size generally af-

fordable for many models. The data assimilation and

parameter estimation interval is every 25 model time

TABLE 2. Model configurations and observation systems.

Large-scale feedbacks Modeled column Observations

SGCM On 10 columns 10 columns

SGCMC3 On 10 columns Columns 2, 3, and 4

SGCMC8 On 10 columns Columns 7, 8, and 9

SSCMC3 Off Column 3 Columns 2, 3, and 4

SSCMC8 Off Column 8 Columns 7, 8, and 9
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steps (;6h). Parameter estimation is carried out after

1000 model time steps, when the state estimation has

reached quasi equilibrium (Zhang et al. 2012; Wu et al.

2013). It is noted that, for a bounded model state vari-

able (e.g., humidity q) the probability often exhibits

non-Gaussian distributions because of the lower bound.

Many studies apply forms of transformation (Schirber

et al. 2013; Hu et al. 2010) to mitigate this problem. In

our study, when the humidity falls below zero, it will be

pulled back to zero. In addition, the estimated param-

eters also have a physically meaningful threshold (listed

in Table 1). When the estimated parameters exceed the

threshold, they are pulled back to the threshold values.

The complete observation system generated from the

‘‘truth model’’ simulation contains independent obser-

vations of temperature and moisture for 28 levels and

10 columns. In the following experiments, we first use

the complete observation system to conduct an SGCM

experiment (row 1 of Table 2). Then we use the obser-

vations in convectively active (or inactive) regions to

conduct another four experiments with two model

configurations (SSCM and SGCM) and two observation

systems (denoted with subscripts C3 and C8) to form

impartial comparisons (rows 2–5 of Table 2). The pa-

rameter estimation results are denoted by SSCMC3 and

SGCMC3 (SSCMC8 and SGCMC8).

4. Parameter estimation in a perfect-model context

a. Single-parameter estimation

In this section, five single-parameter estimation ex-

periments are carried out with different configurations:

the SGCM, SGCMC3, SGCMC8, SSCMC3, and SSCMC8

(Table 2). We first present the results of the single-

parameter estimation in the SGCM serving as a proof-

of-concept study. The SGCM model is the same as the

truth model (with all 10 columns), except for one erro-

neously set parameter to be estimated. For the single-

parameter estimation, an initial parameter bias (e.g.,

Da) is added to the default (truth) value atruth to create

the erroneously set parameter. In our experiment, we

tried three cases, Da 5 10%, 210%, and 20% 3 atruth

(corresponding to different parameter ensemble starting

points in Fig. 4) to emulate different parameter initial

biases. The other three parameters remain at their de-

fault values. This emulates a simple deficient general

FIG. 4. Single-parameter estimation in perfect SGCM. In the perfect SGCM, the model is the same as the truth

model, except for one biased parameter. The results of four parameters in SASCNV: (a) Mb, (b) Ed, (c) a, and

(d) Ey. Dashed black lines are default (truth) values of the parameters. Solid black lines represent ensemble mean

of the estimated parameter. For each parameter, three estimation experiments are conducted with three different

initial parameter biases (10%, 210%, and 20% of the default values) to validate the robustness of parameter

estimation. Solid gray lines indicate the ensemble members.
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climate model case in which only one parameter is er-

roneously set. To represent the probability distribution

of the truth parameter value, a parameter ensemble is

created by perturbing the biased a0 with a Gaussian

distribution of N(0, 10% 3 atruth). The model is then

integrated with this parameter ensemble. It is noted that

the uncertainty of each parameter is different. A small

bias and a small perturbation of 10% 3 atruth help en-

sure that the parameter ensemble members do not go

beyond the physical range.

First, in SGCM, a perfect observation system of all

temperature and moisture observations of 10 columns

and 28 levels is used to conduct an idealized parameter

estimation experiment. Parameter estimation can suc-

cessfully retrieve the truth values of all the four pa-

rameters (Fig. 4) from different initial guesses. It seems

that, for parameters Ed, a, and Ey, the relationships

between parameters and state variables are relatively

more robust, and they converge to the truth more

quickly (Figs. 4b–d). For parameter Mb, the conver-

gence takes a longer time (Fig. 4a). This is because Mb

influences temperature and moisture more indirectly,

and its relationship with state variables is weaker than

that of other parameters so that the model’s response to

this parameter is weaker, which makes the parameter

estimation noisier. In SASCNV, the stabilization effect

of a unit cloud mass flux during a short time Mb is first

calculated. By forming the ‘‘large-scale destabilization

and cloud stabilization’’ quasi equilibrium, the total

mass flux is calculated. The total mass flux is then used to

calculate the feedback of the cloud on temperature and

moisture. Therefore, the relationship between Mb and

model states is more an indirect accumulation process.

In ensemble parameter estimation, it takes longer for

the parameter–state relationship to set up. In con-

clusion, through the EAKF, a biased parameter in a

perfect-model context can be corrected by assimilating

observations into the model and by estimating the

parameter by making full use of the relationship be-

tween the parameter and state variables.

After validating the robustness of the EAKF in pa-

rameter estimation, we compare the results of SGCM

and SSCM under the perfect model framework to study

the role of feedbacks between large-scale motion and

local convection in cumulus convection parameter esti-

mation. In SGCMC3 (or SGCMC8), the model is the

same as the truth model, except for a single erroneously

set parameter. The large-scale feedback is turned on

by allowing interactions between different columns

through advection. The observations of convectively

active (inactive) columns, columns 2–4 (7–9), are used

for data assimilation and parameter estimation. This

SGCM setting is to emulate a general circulation model

where the large-scale feedback between local convec-

tion is allowed. In contrast, the SSCMC3 and SSCMC8

are used to emulate the SCM setting where only one

single column is used for model integration, and the

information of the neighboring columns are needed to

calculate the temperature and moisture gradients in the

advections term is prescribed with observations. Under

this circumstance, the local convection only affects the

local column itself, without having any feedbacks with

other columns. In SSCMC3 (SSCMC8), the model col-

umn locates at column 3 (8), where convection is more

(less) active (Fig. 2a). Observations of column 2 (7) and

column 4 (9) are used to prescribe surrounding in-

formation in the advection terms for column 3 (8), and

the observations of column 3 (8) are used for data as-

similation and parameter estimation. In the SSCM

configuration, the large-scale information is prescribed

by observations, which means that the interaction be-

tween large scales and local convection is turned off

(Table 2). In reality, to validate the cumulus convection

parameterization scheme, a modeler usually uses an

SCM and abundant observational data from a certain

observation program located at an intensive convection

region. Here, two kinds of observations systems (located

at convectively active or inactive regions) are used in our

experiments in this section in an attempt to answer the

following question: If the observation program is located

at a convectively inactive region, can it be used for cu-

mulus convection parameter estimation? Figure 5 shows

the results of estimation for four parameters in the

SGCMC3, SGCMC8, SSCMC3, and SSCMC8.

Generally, for each observation system, the estima-

tion in the SGCM (red and pink lines) is more accurate

and signal dominant than that in the SSCM (blue and

cyan lines), although some of the estimations in the

SSCMC3 (blue lines) are also satisfying under this

framework (Fig. 5). Estimated parameters Ed, a, and Ey

in the SSCMC3 and SSCMC8 have larger biases. This is

because turning off the large-scale feedback leads to a

damping effect on the parameter perturbation, which

results in an underestimate of the model sensitivity to

the parameter. In the ensemble method, each ensemble

member has its perturbed parameter value. In the

SGCMC3 and SGCMC8, the ensemble spread for each

column represents two kinds of sensitivities (or un-

certainties) induced by this parameter uncertainty. The

first is local sensitivity of the local state variables as a

response to the parameter uncertainty, including the

sensitivities of the heat/moisture flux term, and the

convective adjustment term. The second is the sensi-

tivity induced by the large-scale feedback represented

by the advection term. This second kind of sensitivity

includes two parts. One is the advected sensitivities from
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neighboring columns; the other is the sensitivity that was

projected from local column to neighboring column in

an earlier time and projected back to local column

through advection at the current time. In the SGCM,

where large-scale feedbacks are turned on, every col-

umn is affected by this parameter perturbation, and the

model states respond to the perturbation according to

the model physics. However, in the SSCM, where large-

scale feedbacks are turned off, only the modeled column

is affected by the parameter perturbation, while the

surrounding columns are prescribed with observations

from the truth model with the default parameter value.

Under this circumstance, the uncertainty caused by the

parameter perturbation in the modeled column is

damped through advection. The two parts of the large-

scale feedback sensitivity are both removed. The spread

of the ensemble in the SSCM therefore underestimates

the model sensitivity to cumulus convection parameters.

And the ensemble-evaluated covariance between cu-

mulus convection parameters and state variables be-

comes less robust. This sensitivity underestimation can

be examined through a parameter sensitivity study. For

doing that, a 20-member ensemble is formed by per-

turbing each parameter with random noise from a

Gaussian distribution of a zero mean and a variance

equal to 10% of the default parameter value. This en-

semble is integrated from the same initial condition with-

out doing data assimilation and parameter estimation. The

standard deviation (SD) of the state variables is used to

represent the sensitivity because, with the same initial

conditions, the deviation of evolving ensemble members

is caused by merely parameter differences (Liu et al.

2014a,b). Figure 6 shows the mean SD evolution of

temperature for columns 3 and 8 in the SGCM (red and

pink lines), SSCMC3 (blue lines), and SSCMC8 (cyan

lines) with perturbed parameters (moisture has similar

behavior but less pronounced than temperature). It is

seen that a is the most sensitive parameter, with the

highest SD (Fig. 6c), while other parameters have lower

sensitivities. Most of the time, the SDs of SSCMC3 and

SSCMC8 are smaller than that of SGCM. For the most

sensitive parameter a, the SD of SSCMC3 is almost com-

parable with that of SGCM, which contributes to a rela-

tively good estimate of a in SSCMC3 (Fig. 5c). It is noted

that it is highly likely that one parameter has different

sensitivity for different values with itself and other pa-

rameters. However, it is assumed that a 10% variation

around its default value still keeps the parameter far away

from the critical value beyondwhich the sensitivity of both

itself and other parameters can be significantly different.

The parameter sensitivity also displays a 7-day oscil-

lation (Fig. 5), which is the result of the 7-day oscillation

of the model states. The precipitation peaks about every

7 days, indicating strong atmospheric instability and

large convective adjustment. In our model and most

GCMs, the convection parameters take effect through

FIG. 5. Ensemble means of estimated values for parameter (a)Mb, (b)Ed, (c) a, and (d)Ey through the SGCMC3

(red lines), SGCMC8 (pink lines), SSCMC3 (blue lines), and SSCMC8 (cyan lines). The truth values of these pa-

rameters are marked as black lines.
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convective adjustment. Large convective adjustment

helps transfer the parameter uncertainty into the large

spread of model states, which results in large model

sensitivity to the parameter. In convectively active re-

gions, there is more convection, which more efficiently

transfers the parameter uncertainty into that of model

states, which later provides more signal in estimating the

parameter–state covariance.

In our simple multiple-column model, the large-scale

feedback only takes effect through the temperature and

moisture advection term. However, in reality, the form

of large-scale feedbacks could be very complicated. The

perturbation of the cumulus convection parameters not

only affects the local temperature and moisture, but it

also affects other columns and modifies the large-scale

temperature andwind fields, which in turn reconciles the

local vertical motion and influences the stability of the

local column in the future. In most SCM configuration

parameter estimation experiments, the sensitivities as-

sociated with these large-scale feedbacks are usually not

considered.

Parameter estimations using observations of con-

vectively active regions are more accurate and stable

than those using observations of convectively inactive

regions for both the SSCM and SGCM. And this is even

more crucial to parameter estimation with the SSCM.

This is because the model column in SSCMC8 is located

at column 8, where there is less convection (Fig. 2a) as a

result of unfavorable SST. During model integration,

there are more time steps with no convection in en-

semble members or in observations. This has two con-

sequences. First, with less convection, the model has

fewer opportunities to build up the relationship between

the cumulus convection parameters and state variables,

and the parameter sensitivity is further underestimated

(Fig. 6). Second, there would be more occasions where

no-convection observations are used to update ensem-

ble states and parameters, and convection observations

are used to update no-convection ensemble states and

parameters. Neither update is reasonable because the

error covariance represented by the ensemble is not well

defined. Therefore, estimation in SSCMC8 further drifts

away from the truth value (Figs. 5a,c, cyan lines).

However, because of the large-scale linkage, with only

observations of convectively inactive regions, the SGCMC8

can sometimes provide even better estimation than

SSCMC3 (Figs. 4b,c).

Figure 7 serves as a concrete example of how the

large-scale feedback impacts the model response to

parameter perturbation (parameter sensitivity) so as to

contribute to more signal during parameter estimation.

In Fig. 7, the experiment setting is exactly the same as

that of Fig. 6c. The parameter a is perturbed into a

20-member ensemble. From the same initial condition,

the ensemble is integrated with SGCMC8 and SSCMC8, re-

spectively, without observational constraint. The time

FIG. 6. The SD of the SGCM (red for column 3 and pink lines for column 8), SSCMC3 (blue lines), and SSCMC8

(cyan lines) to cumulus convection parameters.
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evolution of temperature profiles of column 8 is tracked.

The initial condition is the same as the line shown in

Fig. 7b (the reason will be explained later). During the

first three time steps, there is no convection in column 8.

Temperature profile ensembles at the third time step in

SGCMC8 display a distribution (Fig. 7a) similar to that of

later time steps (Fig. 7c). This is because, although there is

no convection in column 8 during the first three steps,

there is convection in other columns. As we have ex-

plained earlier, as long as there is convection, the re-

lationship between parameter and model states is

established. And this relationship, as a signal for param-

eter estimation, is transferred to other columns, including

column 8, with the help of the large-scale feedback,

which is briefly represented by advection in our study.

Therefore, when observations of this column are used

for parameter estimation, there is still signal in the

parameter–state covariance. The parameter estimation

with large-scale feedback thus becomes signal domi-

nant even without local convection. On the contrary, in

SSCMC8, the surrounding model states are prescribed

with observations; therefore, the surrounding infor-

mation is the same for all members. In this case, there is

no local convection, which leads to no convective ad-

justment, and the advection adjustment is the same for

all members, so the temperature profiles of column 8

are all the same for all the members (Fig. 7b), leaving a

zero parameter–state covariance. Therefore, there is

no signal in the parameter estimation at all. This is also

why the profiles remain the same as the initial condi-

tion. The profile ensemble is also examined at the one-

hundreth time step, before which there are several

convection occurrences. The temperature ensemble in

SGCM (Fig. 7c) displays a relatively larger sensitivity,

which indicates stronger model response to this pa-

rameter, while that in SSCM (Fig. 7d) displays smaller

FIG. 7. Time evolution of the temperature profile ensemble of column 8 in SGCMC8 and SSCMC8. The exper-

iment setting is the same as in Fig. 6c. All ensemble members are integrated from the same initial condition but

perturbed parameter a values. (a) The temperature profile ensemble in SGCMC8 after the first three steps, during

which no convection happens. The ensemble is inflated by 1000 times to make the difference clearer. (b) The

temperature profile ensemble in SSCMC8 after the first three steps, during which no convection happens. (c),(d) As

in (a),(b), but at the 100th time step, before which there are several convective events. The profile ensemble is

inflated by 10 times.
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response, indicating a less signal-dominant estimation

of the parameter–state relationship. From the above

analysis, we can see that, because of the presence of the

large-scale feedback, the parameter–state relationship

in SGCM is better defined, which consequently leads

to a more stable and efficient parameter estimation.

This experiment also indicates that, although in order

to estimate cumulus convection parameters, observa-

tions of convectively active regions with abundant con-

vection information are more helpful in incorporating

more convection signals.With the help of the large-scale

feedback, observations of convectively inactive regions

can be used to constrain convection parameters. In a

GCM, the observations of convectively inactive regions

can still be useful because the large scales help transfer

the response of the model to the parameter to convectively

inactive regions so that the observations without much

convection may still be used for estimation of convection

parameters. However, the convection frequency in the

observations is muchmore important in an SCMwhen the

large-scale feedback is turned off. Parameter estimation

could likely fail if observations of convectively inactive

regions are used.

b. Simultaneous multiple-parameter estimation

In reality, where the truth parameter values are never

known, it is difficult to attribute the model bias to one

single parameter. Instead, a set of parameters is usually

estimated to help themodel best fit observations (Aksoy

et al. 2006b; Tong and Xue 2008b; Schirber et al. 2013;

Liu et al. 2014a,b). However, because of the compen-

sative effect among multiple parameters (Tong and Xue

2008b; Zhang 2011b), the solution of this optimal set of

parameters that minimizes the error from observations

may not be unique. And the estimated parameter set

that matches the observations quite well may lead to

other problems (Golaz et al. 2013). Therefore, it is

necessary to examine the ability of one estimation sys-

tem to find out the true set of parameters under the

multiple-parameter estimation setting. The performances

of multiple-parameter estimation in SSCM and SGCM

are also compared in Fig. 8, with the same observations

described in the last section.

1) Regardless of the observation locations, estimations

in SGCMC3 (red lines) and SGCMC8 (pink lines) are

generally able to converge to the truth when esti-

mating all parameters simultaneously. And the

simultaneous-parameter estimation does not signifi-

cantly degrade the estimation in the SGCM config-

uration, which is consistent with the study of Schirber

et al. (2013). This is understandable in this case by

recognizing the fact that the four parameters have

different sensitivities and correlations with state vari-

ables. As we have seen from Fig. 6, a is the most sen-

sitive parameter. Also, a has very high correlation with

the model temperature (Fig. 9a, dashed–dotted line).

At each analysis step, parameter a is first corrected,

and the uncertainty of this parameter is greatly

FIG. 8. As in Fig. 5, but for the simultaneous multiple-parameter estimation.
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reduced. After that, the parameter that is the sec-

ond most sensitive (Ey) and has the second highest

correlation (Ey for temperature; Fig. 9a) is cor-

rected, and uncertainty of this parameter is also

reduced. This process goes on and on until the least

sensitive parameter is corrected. It is noted that,

when estimating multiple parameters simultaneously,

because of the multimode parameter–model state

probability distribution and the compensation effect

between parameters, it is possible that other optimal

solutions exist other than the truth solution. In our

perfect model twin-experiment framework, we assume

that the ability to retrieve the truth solution in a

certain sense guarantees the ability to retrieve most

of the truth model behaviors while helping minimize

the analysis error of model states.

2) In this simultaneous-parameter estimation case, the

SSCM generates greater error than in the single-

parameter estimation experiment, except for a in the

SSCMC8 (Fig. 8), and it takes much longer for pa-

rameters to converge. This is because, when multiple

parameters are biased and perturbed, the degree of

freedom becomes higher, and the sensitivity of the

truth model is increased. But since the sensitivity

is underestimated by the SSCM, constraints of the

advection from the ‘‘correct’’ observation may over-

whelm the sensitivity caused by less sensitive param-

eters. Compensating effect in the moisture between

the precipitation efficiency and the evaporation effi-

ciency becomes significant so that for each model con-

figuration the deviations of the estimated parameter

value from the truth value for Ed and Ey are opposite.

It is noticed that, in parameter estimation with the

SGCM, the compensation effect seems to have little

negative influence on estimation results. However, pa-

rameter estimation is generally degraded in the SSCM.

It is possible that, when the neighboring constraints

prevent parameter-induced uncertainty from accumu-

lating, the compensation effect becomes more impor-

tant so that the estimations for less sensitive parameters

are degraded.

5. Parameter estimation in a biased-model context

In reality, there are many parameters related to other

physical processes that can significantly influence the

model climate and are not corrected. And the climate

drift in theGCM is caused not by a single parameter, but

by a combination of the effects of all biased parameters.

These types of unknown parameter biases can be re-

ferred to as ‘‘hidden biases.’’ When confronting hidden

bias, parameter estimation is carried out under a biased-

model context within a biased model in which the

compensation effect between different parameter biases

exists (Schirber et al. 2013; Tong and Xue 2008b; Aksoy

et al. 2006b; Tong and Xue 2008b; Zhang 2011b). Un-

der the influence of compensation, parameter estima-

tion is confronted with mainly two questions. First,

with the hidden bias, are we able to find out the truth

value of one known erroneously set parameter? This is

very difficult but possible if the physical process con-

trolled by this known biased parameter is largely ir-

relevant to that of the hidden bias. Second, are we able

to find the optimal values for one or several parameters

FIG. 9. The correlation between parameter values and state variables: (a) for temperature and (b) for specific

humidity. The solid black line corresponds to the radiative cooling rate, and the solid (dashed, dashed–dotted, and

dotted) gray lines correspond toMb (Ed, a, andEy). This correlation is calculated by perturbing the parameter with

1000 random noises of Gaussian distribution ofN(0, s), where s is 10% of the default value of the parameter, and

then running the model for 1000 time steps and calculating the correlation between parameters and state variables.

4112 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 07:57 PM UTC



that can compensate for the error caused by the hidden

bias? This is more applicable but could be very dan-

gerous because the compensating parameters and the

hidden bias may belong to different physical processes.

As such, using one to compensate the other may result

in serious side effects in other physical quantities that

are not considered in the cost function in the parameter

estimation. For example, if we tend to minimize the

error in temperature and moisture by estimating the

cloud parameter to compensate for hidden radiation

bias, a large error may emerge in precipitation, and the

profiles of the temperature and moisture may become

very unrealistic. In our study, we try to estimate cu-

mulus convection parameters with the hidden bias in

radiation. The biased model is set by adding a 10%

cooling bias to the radiative cooling rate R. A forecast

is made with the biased radiative cooling rate and the

estimated cumulus convection parameters after the

estimations converge. The climatology of state vari-

ables (temperature and moisture) is compared with the

truth to determine estimation quality.

a. Single-parameter estimation in a biased model

The most sensitive convection parameter, a (see Fig. 6c),

is chosen for a single-parameter estimation experiment.

The estimation is conductedwith the SGCMC3, SGCMC8,

SSCMC3, and SSCMC8 model configurations to explore

the influence of large-scale feedbacks as well as the im-

portance of convection density in observations. The es-

timated a converges to values different from the truth in

different model configurations (Fig. 10). Nevertheless, in

all configurations, estimated a values are significantly

higher than the truth value of 0.5. This is reasonable be-

cause, on one hand, the radiative cooling parameter and

a have a strong opposite correlation with modeled

temperature (Fig. 9a). In the biased model, when a

larger radiative cooling rate is used, the temperature is

reduced. To compensate for this cooling effect, larger

a should be applied to increase the temperature. Phys-

ically, when a is increased, the entrainment rate is re-

duced (Pan and Wu 1995). By entraining in less cold air

from the outside environment and diluting the buoyancy

of the cloud, themixing between the inside cumulus cloud

and outside environment is reduced, which helps main-

tain high temperature in the convection column (Simpson

1971; Rooy et al. 2013). On the other hand, the larger

radiative cooling rate bias causes the atmosphere to be

more unstable, while the estimated higher a value

leads to less entrainment, which results in a more stable

atmosphere.

A forecast with the a-optimized, hidden-radiation-

bias-presented SGCM is conducted to verify the com-

pensation effect of a to the hidden radiation bias. The

comparison of the climatology error (forecast truth) of

state variables of the SGCMC3, SSCMC3, SGCMC8, and

SSCMC8 is shown in Fig. 11. First, the SGCM method

gives better climatology than the SSCM, whatever ob-

servations are used. This is because, in the SGCM con-

figuration, the relationship between parameters and

state variables is fully resolved. Second, the temperature

in SGCMC3 and SSCMC3 has a cold bias, while that in

SGCMC8 and SSCMC8 has a warm bias. Radiation

cools the atmosphere, while convection heats the at-

mosphere. There is more convection around column 3,

where convection helps mitigate a large portion of the

radiation-bias-induced cooling, thus making the tem-

perature increment Dyok,i in Eq. (7) smaller when doing

data assimilation, which leads to a smaller parameter

increment Duu
m,i in Eq. (8). Therefore, a estimated

with the SGCMC3 and SSCMC3 (SGCMC8 and SSCMC8)

is smaller (larger), and the entrainment in the SGCMC3

and SSCMC3 (SGCMC8 and SSCMC8) is larger (smaller),

which leads to relatively lower (higher) temperature

and lower (higher) moisture. With higher values of

parameter a, the moisture is increased in all model

configurations as a result of less dilution of the dry air

through entrainment. However, regardless of the er-

ror in temperature and moisture, the precipitation is

increased in all estimation schemes (not shown) be-

cause the radiative cooling bias leads to a less stable

atmosphere.

From the above experiment results, we get a concep-

tual idea that a single-parameter estimation (chosen

from a decent sensitivity study) may compensate, to

some extent, the hidden bias in a GCM. It is better to be

cautious interpreting the result because the estimated

parameter is from different physical processes. The re-

sult not only depends on model configurations (SGCM

FIG. 10. Single-parameter estimation under the biased-radiation

model regime. In this experiment, the biased model is constructed

by adding a 10% bias on the radiative cooling rate. Parameter a is

used for the single-parameter estimation.
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or SSCM) and observation locations (columns 2–4 or

columns 7–9) but is also closely related to the physical

processes. In addition, this compensation could be

dangerous because errors may emerge in other quan-

tities that are not considered in the cost function of

parameter estimation. Parameter estimation and fore-

cast with a biased model for the other three parameters

are less obvious, but with similar mechanism. In more

realistic models, this compensation does happen occa-

sionally (Golaz et al. 2013). It might help improve the

desired performance but could result in larger bias in

other model aspects. This remains a very tough issue in

current parameter estimation in various models. And it

is also the reason why it is even more difficult to tune

model parameters manually.

b. Simultaneous-parameter estimation in the biased
model

A final experiment is made to find a set of harmonious

parameters to compensate for the hidden bias in the bi-

ased model. The biased model is the same as that in the

single-parameter estimation introduced in the last sec-

tion. The four suspicious cumulus convection parameters

(Table 1) are estimated simultaneously. All four pa-

rameters converge to certain values for the SGCMC3,

SGCMC8, and SSCMC3 (Fig. 12). For SSCMC8, Mb, Ed,

FIG. 11. Forecast climatology error (forecast truth) with estimated parameters in the single-

parameter estimation when hidden bias is present. (a),(c),(e),(g) The error of the forecasted

temperature climatology from the truth. (b),(d),(f),(h) The error of the forecasted moisture

climatology from the truth. The source of the parameter estimation used is the (a),(b) SGCMC3,

(c),(d) SSCMC3, (e),(f) SGCMC8, and (g),(h) SSCMC8.

4114 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 07:57 PM UTC



and a tend to go beyond the valid range and stay at the

boundary after about 2000 days. This is because, in a

biased-model context, when we try to use convection

parameters to compensate for the hidden radiative bias

with the observations of convectively inactive regions, the

ensemble-estimated parameter–state error covariance

may be contaminated with noises. This is not a big

problem for SGCMC8 because the large-scale feedback

helps transfer the parameter uncertainties from con-

vectively active regions to convectively inactive regions.

However, in SSCMC8, this large-scale feedback is miss-

ing, and the ensemble-estimated covariance becomes

more noisy, leaving little signal for parameter estima-

tion. For the SGCMC3, SGCMC8, and SSCMC3, the

most significant compensation comes from parameter a,

with estimated values higher than those in the perfect

model (Fig. 12c) experiment in model configurations of

SGCMC3, SGCMC8, and SSCMC3, since a is the most

sensitive parameter (Fig. 6c) and has the most robust

relationship with temperature (Fig. 9a), as discussed in

the previous section. To examine the estimation, fore-

casts for the SGCMC3, SGCMC8, and SSCMC3 are also

made with the converged parameter values. Generally,

compared with the single-parameter estimation case,

the error of the climatological temperature and mois-

ture is reduced (Fig. 13), except for temperature in the

SSCMC3 (Fig. 13c). The improvement in moisture is

likely due to the inclusion of the moisture-related

evaporation parameter Ey, which maintains a high cor-

relationwithmoisture in the lower atmosphere (Fig. 9b).

The cold biases in the SGCMC3 and SSCMC3 are more

obvious, and the warm bias in SGCMC8 is less obvious.

The estimated a is actually larger (smaller) in the

SSCMC3 and SGCMC3 (SGCMC8), indicating that the

inclusion of the other three parameters may have a

cooling effect on the whole system. In conclusion,

finding a set of coherent parameters to compensate for

the hidden bias may help improve the overall climatol-

ogy but remains challenging because of the complexity

of the relationship between parameter biases (Posselt

and Bishop 2012; Posselt et al. 2014).

6. Conclusions and discussion

A multiple-column atmospheric model is designed

that links convective columns together by the advection

to form a simplified general circulation model (SGCM).

When the feedback between convective columns and

large scales is turned off, the model degrades to a sim-

plified single-column model (SSCM). With two model

configurations (SGCM and SSCM), the role of large-

scale feedbacks on cumulus convection parameter

FIG. 12. Simultaneous-parameter estimation of the SSCM and SGCM under the biased model regime. The

estimated ensemblemean of the SGCMC3 (SGCMC8, SSCMC3, and SSCMC8) is represented by red (pink, blue, and

cyan) lines.
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estimation is explored under different practical condi-

tions. We examined the impacts of observational loca-

tions (at convectively active and inactive regions),

estimation configurations (single- and multiple-parameter

estimations), and model error regimes (perfect- and

biased-model contexts). Results show that including

the large-scale feedback is important in tuning pa-

rameters in cumulus convection parameterization for

climate modeling because of its role in transferring

convection information into large-scale impact. This is

realized by enhancing the signal-to-noise ratio in the

statistical representation of the relationship between

convection parameters and state variables. In ensemble-

based parameter estimation, this statistics representation

refers to the error covariance represented by the ensem-

ble. This role of large-scale feedbacks could be evenmore

important for more complex and realistic situations.

Robust convection parameter estimation is crucial

for improving climate simulation by reducing model

biases because it helps improve representation of the

physical process and thus reduces model errors. In

addition, it is expected that significant climate phe-

nomena, such as ENSO and monsoons, could be better

predicted when convection parameters are optimally

estimated. With greater efforts to optimize physical

parameters in GCMs with the real observing system,

climate simulation and prediction is expected to be

progressively advanced.

Because of the difficulty in separating local convec-

tion and large-scale feedbacks and the challenge of es-

timating convection parameters in a GCM (Schirber

et al. 2013), the simple column-based model with the

simplest representation of large-scale feedbacks is first

used to explore the influence of the large-scale feed-

back in estimating convection parameters. Although

this preliminary research has provided promising re-

sults in cumulus convection parameter estimation,

more work needs to be done in the future. Most im-

portantly, more realistic models with more realistic

large-scale feedbacks should be involved. The large-

scale feedback in this research is simply represented

by the temperature and moisture gradients in the ad-

vection term. However, in more realistic models, the

local convection not only affects other locations

through gradients in the advection but also modifies

the wind field, radiation, precipitation, and cloud ef-

fect, thus influencing the energy budget of the Earth

system (Gupta et al. 2013), and changes the pattern of

large-scale flows. Besides, in more realistic models,

the physical processes would be more complete. For

example, the large-scale cloud precipitation and the

radiation response to the cloud would be included.

With more realistic large-scale feedback and more

complete physical processes, the model would have

more complex sensitivities to the uncertainty of con-

vection parameters. One would naturally expect a

FIG. 13. As in Fig. 11, but for the simultaneous multiple-parameter estimation.

4116 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 07:57 PM UTC



more important role of large-scale feedbacks in con-

vection parameter estimation.

Second, in this research, to make the large-scale

feedback easily turned on or off, the surface pressure,

boundary SST, radiative cooling, and wind profiles are

fixed. However, in the real world and in more realistic

models, these physical quantities are constantly inter-

acting with each other, bringing in more variability and

complexity. When more variables and physical pro-

cesses are included in the model, we would have more

options for observation systems. For data assimilation

and parameter estimation with real observations, the

selection of observations becomes quite important. In

the real world, there are not sufficient observations of

temperature and moisture profiles, especially in ocean

and desert regions. Top-of-the-atmosphere radiative

fluxes are potentially a better choice for their wide

coverage, high resolution, and frequency. However, re-

cent studies reveal that the relationship between ob-

servations and cloud parameters in the convection

parameterization scheme is very complicated, so the

selection of observations may influence the quality of

data assimilation and parameter estimation (Posselt and

Vukicevic 2010; Posselt and Bishop 2012; Posselt et al.

2014; van-Lier-Walqui et al. 2012, 2014).

In more realistic models, the influence of the oc-

currence of convection on parameter estimation may

become very important. In our simple model with

fixed radiation, wind shear, and boundary heating,

the convection occurs very frequently. Therefore, the

parameter–state relationship is relatively robust. How-

ever, in the real GCM, where the convection is more

sparse and rare, the lower occurrence of convection

may lead to a seasonal variability of the convergence

of the parameter estimation: for summer, when there

are more convective events and more convection ob-

servations, the estimation could be more signal dom-

inant, whereas for winter the estimation could be

more noise dominant. If future study does show such

seasonal variability, the role of the large-scale feed-

back could become more crucial because large-scale

feedback helps transfer parameter–state relationships

from convectively active regions to other areas and

helps preserve the convective signal. However, how

much the large-scale would contribute also depends

on the complexity and nonlinearity of the large-scale

feedback. It is also noted that, although our study

showed promising results using observations of con-

vectively inactive regions to estimate parameters in

the cumulus convection parameterization schemes

in a GCM where large-scale feedbacks are included,

given that the parameter would have strong influence

on global climatology, it still needs to be tested in

more realistic models where more physical processes

and complexities are included.
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ment and evaluation of a convection scheme for use in

climate models. J. Atmos. Sci., 56, 1766–1782, doi:10.1175/

1520-0469(1999)056,1766:DAEOAC.2.0.CO;2.

Fairall, C. W., and E. F. Bradley, 2003: Bulk parameterization of air–

sea fluxes: Updates and verification for the COARE algorithm.

J. Climate, 16, 571–591, doi:10.1175/1520-0442(2003)016,0571:

BPOASF.2.0.CO;2.

——, ——, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk

parameterization of air–sea fluxes in TOGA COARE.

J. Geophys. Res., 101, 3747–3767, doi:10.1029/95JC03205.
Golaz, J.-C., V. E. Larson, J. A. Hansen, D. P. Schanen, and B. M.

Griffin, 2007: Elucidating model inadequacies in a cloud pa-

rameterization by use of an ensemble-based calibration

framework. Mon. Wea. Rev., 135, 4077–4096, doi:10.1175/

2007MWR2008.1.

——, L. W. Horowitz, and H. Levy II, 2013: Cloud tuning in a

coupled climate model: Impact on 20th century warming.

Geophys. Res. Lett., 40, 2246–2251, doi:10.1002/grl.50232.

Grell, G. A., 1993: Prognostic evaluation of assumptions used by

cumulus parameterization. Mon. Wea. Rev., 121, 764–787,

doi:10.1175/1520-0493(1993)121,0764:PEOAUB.2.0.CO;2.

Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of

deep precipitating convection over land with cloud-resolving

models and single-columnmodels.Quart. J. Roy.Meteor. Soc.,

130, 3139–3172, doi:10.1256/qj.03.145.

Gupta, A. S., N. C. Jourdain, J. N. Brown, and D. Monselesan,

2013: Climate drift in the CMIP5 models. J. Climate, 26, 8597–

8615, doi:10.1175/JCLI-D-12-00521.1.

Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation

model: Climate performance and sensitivity to parametrized

physics with emphasis on tropical convection. Climate Dyn.,

27, 787–813, doi:10.1007/s00382-006-0158-0.

Hu, X. M., F. Zhang, and J. W. Nielsen-Gammon, 2010: Ensemble-

based simultaneous state and parameter estimation for treat-

ment of mesoscale model error: A real-data study. Geophys.

Res. Lett., 37, L08802, doi:10.1029/2010GL043017.

Jazwinski, A. H., 1970: Stochastic and Filtering Theory. Mathe-

matics in Science and Engineering, Vol. 64, Academic Press,

376 pp.

Kang, J. S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide, 2011:

‘‘Variable localization’’ in an ensemble Kalman filter: Appli-

cation to the carbon cycle data assimilation. J. Geophys. Res.,

116, D09110, doi:10.1029/2010JD014673.

Klocke, D., R. Pincus, and J. Quaas, 2011: On constraining esti-

mates of climate sensitivity with present-day observations

through model weighting. J. Climate, 24, 6092–6099, doi:10.1175/

2011JCLI4193.1.

Knight, C. G., and Coauthors, 2007: Association of parameter,

software, and hardware variation with large-scale behavior

across 57,000 climate models. Proc. Natl. Acad. Sci. USA, 104,

12 259–12 264, doi:10.1073/pnas.0608144104.

Lau, K., and P. H. Chan, 1988: Intraseasonal and interannual var-

iations of tropical convection: A possible link between the

40–50 day oscillation and ENSO? J. Atmos. Sci., 45, 506–521,

doi:10.1175/1520-0469(1988)045,0506:IAIVOT.2.0.CO;2.

Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability

in 14 IPCC AR4 climate models. Part I: Convective signals.

J. Climate, 19, 2665–2690, doi:10.1175/JCLI3735.1.

Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk param-

eterization of air–sea exchanges of heat and water vapor in-

cluding the molecular constraints at the interface. J. Atmos.

Sci., 36, 1722–1735, doi:10.1175/1520-0469(1979)036,1722:

BPOASE.2.0.CO;2.

Liu, Y., Z. Liu, S. Zhang, R. Jacob, F. Lu, X. Rong, and S. Wu,

2014a: Ensemble-based parameter estimation in a coupled

general circulation mode. J. Climate, 27, 7151–7162,

doi:10.1175/JCLI-D-13-00406.1.

——, ——, ——, X. Rong, R. Jacob, S. Wu, and F. Lu, 2014b:

Ensemble-based parameter estimation in a coupled GCM

using the adaptive spatial average method. J. Climate, 27,

4002–4014, doi:10.1175/JCLI-D-13-00091.1.

Lord, S., 1982: Interaction of a cumulus cloud ensemble with

the large-scale environment. Part III: Semi-prognostic

test of the Arakawa–Schubert cumulus parameterization.

J. Atmos. Sci., 39, 88–103, doi:10.1175/1520-0469(1982)039,0088:

IOACCE.2.0.CO;2.

——, and A. Arakawa, 1980: Interaction of a cumulus cloud en-

semble with the large-scale environment. Part II. J. Atmos.

Sci., 37, 2677–2692, doi:10.1175/1520-0469(1980)037,2677:

IOACCE.2.0.CO;2.

Ma, H. Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013:

Metrics and diagnostics for precipitation-related processes in

climate model short-range hindcasts. J. Climate, 26, 1516–

1534, doi:10.1175/JCLI-D-12-00235.1.

Mrowiec, A. A., C. Rio, A. M. Fridlind, A. S. Ackerman, A. D.

Del Genio, O. M. Pauluis, A. C. Varble, and J. Fan, 2012:

Analysis of cloud-resolving simulations of a tropi-

cal mesoscale convective system observed during TWP-

ICE: Vertical fluxes and draft properties in convective

and stratiform regions. J. Geophys. Res., 117, D19201,

doi:10.1029/2012JD017759.

Mukhopadhyay, P., S. Staraphdar, B. N. Coswami, and

K. Krishnakumar, 2010: Indian summer monsoon precipi-

tation climatology in a high-resolution regional climate

model: Impacts of convective parameterization on sys-

tematic biases. Wea. Forecasting, 25, 369–387, doi:10.1175/

2009WAF2222320.1.

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J.

Webb, M. Collins, and D. A. Stainforth, 2004: Quantification

of modelling uncertainties in a large ensemble of climate

change simulations. Nature, 430, 768–772, doi:10.1038/

nature02771.

Pan, H., and W. Wu, 1995: Implementing a mass flux convection

parameterization package for the NMC Medium-Range

Forecast model. NCEP Office Note 409, 43 pp. [Avail-

able online at http://www.emc.ncep.noaa.gov/officenotes/

FullTOC.html.]

Park, A., and W. Funk, 2011: A westward extension of the warm

pool leads to a westward extension of the Walker circula-

tion, drying eastern Africa. Climate Dyn., 37, 2417–2435,

doi:10.1007/s00382-010-0984-y.

Posselt, D. J., and T. Vukicevic, 2010: Robust characterization

of model physics uncertainty for simulations of deep moist

convection. Mon. Wea. Rev., 138, 1513–1535, doi:10.1175/

2009MWR3094.1.

——, and C. H. Bishop, 2012: Nonlinear parameter estimation:

Comparison of an ensemble Kalman smoother with a

Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140,

1957–1974, doi:10.1175/MWR-D-11-00242.1.

——, D. Hodyss, and C. H. Bishop, 2014: Errors in ensem-

ble Kalman smoother estimates of cloud microphysical

4118 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 07:57 PM UTC

http://dx.doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
http://dx.doi.org/10.1029/95JC03205
http://dx.doi.org/10.1175/2007MWR2008.1
http://dx.doi.org/10.1175/2007MWR2008.1
http://dx.doi.org/10.1002/grl.50232
http://dx.doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
http://dx.doi.org/10.1256/qj.03.145
http://dx.doi.org/10.1175/JCLI-D-12-00521.1
http://dx.doi.org/10.1007/s00382-006-0158-0
http://dx.doi.org/10.1029/2010GL043017
http://dx.doi.org/10.1029/2010JD014673
http://dx.doi.org/10.1175/2011JCLI4193.1
http://dx.doi.org/10.1175/2011JCLI4193.1
http://dx.doi.org/10.1073/pnas.0608144104
http://dx.doi.org/10.1175/1520-0469(1988)045<0506:IAIVOT>2.0.CO;2
http://dx.doi.org/10.1175/JCLI3735.1
http://dx.doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-13-00406.1
http://dx.doi.org/10.1175/JCLI-D-13-00091.1
http://dx.doi.org/10.1175/1520-0469(1982)039<0088:IOACCE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1982)039<0088:IOACCE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1980)037<2677:IOACCE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1980)037<2677:IOACCE>2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-12-00235.1
http://dx.doi.org/10.1029/2012JD017759
http://dx.doi.org/10.1175/2009WAF2222320.1
http://dx.doi.org/10.1175/2009WAF2222320.1
http://dx.doi.org/10.1038/nature02771
http://dx.doi.org/10.1038/nature02771
http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html
http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html
http://dx.doi.org/10.1007/s00382-010-0984-y
http://dx.doi.org/10.1175/2009MWR3094.1
http://dx.doi.org/10.1175/2009MWR3094.1
http://dx.doi.org/10.1175/MWR-D-11-00242.1


parameters. Mon. Wea. Rev., 142, 1631–1654, doi:10.1175/

MWR-D-13-00290.1.

Pulido, M., and J. Thuburn, 2006: Gravity wave drag estimation

from global analyses using variational data assimilation prin-

ciples. Part II: A case study. Quart. J. Roy. Meteor. Soc., 132,

1527–1543, doi:10.1256/qj.05.43.

Randall, D. A., K. Xu, R. J. C. Somerville, and S. Iacobellis, 1996:

Single-column models and cloud ensemble models as links be-

tween observations and climate models. J. Climate, 9, 1683–1697,

doi:10.1175/1520-0442(1996)009,1683:SCMACE.2.0.CO;2.

Rennó, N. O., K. A. Emanuel, and P. H. Stone, 1994: Radiative-

convective model with an explicit hydrologic cycle: 1. For-

mulation and sensitivity to model parameters. J. Geophys.

Res., 99, 14 429–14 441, doi:10.1029/94JD00020.

Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment

in cumulus convection: An overview. Quart. J. Roy. Meteor.

Soc., 139, 1–19, doi:10.1002/qj.1959.

Rougier, J., D. M. H. Sexton, J. M. Murphy, and D. Stainforth,

2009: Analyzing the climate sensitivity of the HadSM3 climate

model using ensembles from different but related experi-

ments. J. Climate, 22, 3540–3557, doi:10.1175/2008JCLI2533.1.

Ruiz, J., and M. Pulido, 2014: Parameter estimation using

ensemble-based data assimilation in the presence of model

error. Mon. Wea. Rev., 143, 1568–1582, doi:10.1175/

MWR-D-14-00017.1.

——, ——, and T. Miyoshi, 2013: Estimating model parameters

with ensemble-based data assimilation: A review. J. Meteor.

Soc. Japan, 91, 79–99, doi:10.2151/jmsj.2013-201.

Schirber, S., D. Klocke, R. Pincus, J. Quaas, and J. L. Anderson,

2013: Parameter estimation using data assimilation in an at-

mospheric general circulation model: From a perfect toward

the real world. J. Adv.Model. Earth Syst, 5, 58–70, doi:10.1029/

2012MS000167.

Simpson, J., 1971: On cumulus entrainment and one-

dimensional models. J. Atmos. Sci., 28, 449–455, doi:10.1175/

1520-0469(1971)028,0449:OCEAOD.2.0.CO;2.

Sobel, A., and G. Bellon, 2009: The effect of imposed drying on

parameterized deep convection. J. Atmos. Sci., 66, 2085–2096,

doi:10.1175/2008JAS2926.1.

Song, X., and G. J. Zhang, 2009: Convection parameterization,

tropical Pacific double ITCZ, and upper-ocean biases in the

NCAR CCSM3. Part I: Climatology and atmospheric feed-

back. J. Climate, 22, 4299–4315, doi:10.1175/2009JCLI2642.1.

Sui, C. H., X. Li, and M. J. Yang, 2007: On the definition of pre-

cipitation efficiency. J. Atmos. Sci., 64, 4506–4513, doi:10.1175/

2007JAS2332.1.

Tiedtke, M. A., 1989: Comprehensive mass flux scheme for cu-

mulus parameterization in large-scale models. Mon. Wea.

Rev., 117, 1779–1800, doi:10.1175/1520-0493(1989)117,1779:

ACMFSF.2.0.CO;2.

Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equa-

torial 30–60 day oscillation and the Arakawa–Schubert pen-

etrative cumulus parameterization. J. Meteor. Soc. Japan, 66,

883–901.

Tong, M., and M. Xue, 2008a: Simultaneous estimation of micro-

physical parameters and atmospheric state with simulated

radar data and ensemble square root Kalman filter. Part I:

Sensitivity analysis and parameter identifiability. Mon. Wea.

Rev., 136, 1630–1648, doi:10.1175/2007MWR2070.1.

——, and ——, 2008b: Simultaneous estimation of microphysical

parameters and atmospheric state with simulated radar data

and ensemble square root Kalman filter. Part II: Parameter

estimation experiments. Mon. Wea. Rev., 136, 1649–1668,

doi:10.1175/2007MWR2071.1.

Tracton, M. S., 1973: The role of cumulus convection in the develop-

ment of extratropical cyclones. Mon. Wea. Rev., 101, 573–593,

doi:10.1175/1520-0493(1973)101,0573:TROCCI.2.3.CO;2.

van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012:

Quantification of cloud microphysical parameterization un-

certainty using radar reflectivity. Mon. Wea. Rev., 140, 3442–

3466, doi:10.1175/MWR-D-11-00216.1.

——, ——, and ——, 2014: Linearization of microphysical pa-

rameterization uncertainty using multiplicative process per-

turbation parameters. Mon. Wea. Rev., 142, 401–413, doi:10.1175/
MWR-D-13-00076.1.

Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively

interactive systems.Quart. J. Roy. Meteor. Soc., 118, 877–926,

doi:10.1002/qj.49711850705.

Wu, X., S. Zhang, Z. Liu, A. Rosati, and T. L. Delworth, 2013: A

study of impact of the geographic dependence of observing

system on parameter estimation with an intermediate

coupled model. Climate Dyn., 40, 1789–1798, doi:10.1007/
s00382-012-1385-1.

Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the

predominance of standing Central Pacific Warming after

the late 1990s. Climate Dyn., 41, 327–340, doi:10.1007/

s00382-012-1427-8.

Zhang, S., 2011a: Impact of observation-optimized model param-

eters on decadal predictions: Simulation with a simple pyc-

nocline prediction model. Geophys. Res. Lett., 38, L02702,

doi:10.1029/2010GL046133.

——, 2011b: A study of impacts of coupledmodel initial shocks and

state–parameter optimization on climate predictions using a

simple pycnocline predictionmodel. J. Climate, 24, 6210–6226,

doi:10.1175/JCLI-D-10-05003.1.

——, and J. L. Anderson, 2003: Impact of spatially and temporally

varying estimates of error covariance on assimilation in a

simple atmospheric model. Tellus, 55A, 126–147, doi:10.1034/

j.1600-0870.2003.00010.x.

——, X. Zou, and J. E. Ahlquist, 2001: Examination of numerical

results from tangent linear and adjoint of discontinuous non-

linear models. Mon. Wea. Rev., 129, 2791–2804, doi:10.1175/

1520-0493(2001)129,2791:EONRFT.2.0.CO;2.

——,M. J.Harrison,A.Rosati, andA. T.Wittenberg, 2007: System

design and evaluation of coupled ensemble data assimilation

for global oceanic climate studies.Mon. Wea. Rev., 135, 3541–

3564, doi:10.1175/MWR3466.1.

——, Z. Liu, A. Rosati, and T. Delworth, 2012: A study of en-

hancive parameter correction with coupled data assimilation

for climate estimation and prediction using a simple coupled

model. Tellus, 64A, 10963, doi:10.3402/tellusa.v64i0.10963.

Zhang, X.-F., S. Zhang, Z. Liu, X. Wu, and G. Han, 2015: Param-

eter optimization in an intermediate coupled climate model

with biased physics. J. Climate, 28, 1227–1247, doi:10.1175/

JCLI-D-14-00348.1.
�Zupanski, D., 1993: The effects of discontinuities in the Betts–

Miller cumulus convection scheme on four-dimensional vari-

ational data assimilation. Tellus, 45A, 511–524, doi:10.1034/

j.1600-0870.1993.00013.x.

1 JUNE 2016 L I E T AL . 4119

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 07:57 PM UTC

http://dx.doi.org/10.1175/MWR-D-13-00290.1
http://dx.doi.org/10.1175/MWR-D-13-00290.1
http://dx.doi.org/10.1256/qj.05.43
http://dx.doi.org/10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2
http://dx.doi.org/10.1029/94JD00020
http://dx.doi.org/10.1002/qj.1959
http://dx.doi.org/10.1175/2008JCLI2533.1
http://dx.doi.org/10.1175/MWR-D-14-00017.1
http://dx.doi.org/10.1175/MWR-D-14-00017.1
http://dx.doi.org/10.2151/jmsj.2013-201
http://dx.doi.org/10.1029/2012MS000167
http://dx.doi.org/10.1029/2012MS000167
http://dx.doi.org/10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2
http://dx.doi.org/10.1175/2008JAS2926.1
http://dx.doi.org/10.1175/2009JCLI2642.1
http://dx.doi.org/10.1175/2007JAS2332.1
http://dx.doi.org/10.1175/2007JAS2332.1
http://dx.doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
http://dx.doi.org/10.1175/2007MWR2070.1
http://dx.doi.org/10.1175/2007MWR2071.1
http://dx.doi.org/10.1175/1520-0493(1973)101<0573:TROCCI>2.3.CO;2
http://dx.doi.org/10.1175/MWR-D-11-00216.1
http://dx.doi.org/10.1175/MWR-D-13-00076.1
http://dx.doi.org/10.1175/MWR-D-13-00076.1
http://dx.doi.org/10.1002/qj.49711850705
http://dx.doi.org/10.1007/s00382-012-1385-1
http://dx.doi.org/10.1007/s00382-012-1385-1
http://dx.doi.org/10.1007/s00382-012-1427-8
http://dx.doi.org/10.1007/s00382-012-1427-8
http://dx.doi.org/10.1029/2010GL046133
http://dx.doi.org/10.1175/JCLI-D-10-05003.1
http://dx.doi.org/10.1034/j.1600-0870.2003.00010.x
http://dx.doi.org/10.1034/j.1600-0870.2003.00010.x
http://dx.doi.org/10.1175/1520-0493(2001)129<2791:EONRFT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2791:EONRFT>2.0.CO;2
http://dx.doi.org/10.1175/MWR3466.1
http://dx.doi.org/10.3402/tellusa.v64i0.10963
http://dx.doi.org/10.1175/JCLI-D-14-00348.1
http://dx.doi.org/10.1175/JCLI-D-14-00348.1
http://dx.doi.org/10.1034/j.1600-0870.1993.00013.x
http://dx.doi.org/10.1034/j.1600-0870.1993.00013.x

